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Abstract
In 1943 Eliezer showed that, according to the Abraham–Lorentz–Dirac
equation, a point charge cannot fall on a centre of attractive Coulombian
forces, if one considers only motions constrained on a line. In other words,
the Abraham–Lorentz–Dirac equation on a line does not admit solutions x(t)

such that x → 0 for t → tc, with either a finite or infinite tc. In this paper it is
shown that this remain true for the full three-dimensional problem.

PACS number: 03.50.De

1. Introduction

It is known that the motion of a charged point particle is well described, according to classical
electromagnetism, by the so-called Abraham–Lorentz–Dirac equation [1, 2]. In the non-
relativistic approximation, this takes the form

ε
...
x= mẍ − F (x) (1)

where x ∈ R
3, F is an external mechanical force field, m is the point particle’s mass, and the

constant ε depends on the charge e of the particle and on the speed of light c through ε = 2e2

3c3 .
The term on the left-hand side involving the third derivative is due to the self-interaction
between the charge and the electromagnetic field and vanishes for an uncharged particle, for
which the more familiar Newton law of motion is recovered.

The Abraham–Lorentz–Dirac equation, being of third order, is non-conservative, and this
fact precludes the possibility of providing by elementary mathematical techniques an answer
to a problem of great physical interest, such as the stability of the atom. Indeed, if one takes
F = −Ze2x/|x|3, describing the attractive force on an electron due to a nucleus of atomic
number Z fixed at the origin, the mechanical energy is not a constant of motion and so it is
not known a priori whether the particle’s motion will be bounded away from the origin or on
the contrary will fall on it by spiralling inwards. However, at the beginning of the century
the common opinion, mainly based on heuristic considerations, was that a charged particle
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would fall on the centre of force in a rather short time (10−8 s, for example see [3]), and such
a lack of accounting for the observed stability of the atoms led to the development of quantum
mechanics.

Nevertheless, mathematical theorems on equation (1) were lacking until 1943, when
Eliezer [4] (see also [5]) proved a rather astonishing result. Indeed, at variance with what
had always been presumed, he proved that, for a motion on a line with an attractive force
−Ze2/x2, there exists no solution such that x → 0 for t → tc, with a finite or an infinite tc,
namely no solution falls on the centre of force in a finite or an infinite time.

However, from the physical point of view this result is too weak, because it refers to the
unrealistic case of motions on a line, namely to a set of initial data of zero measure, having
parallel velocity and acceleration, and zero initial angular momentum. Our aim is to extend
the theorem to the fully three-dimensional motions, showing that, without any restriction on
the initial data, there do not exist motions falling on the centre of force in a finite or an infinite
time.

The paper is arranged as follows: in section 2 the main theorem is stated and proved, using
two lemmas which are proved in section 3; in section 4 some further comments are added. The
proofs of two further lemmas having some general character and used in section 3 are deferred
to an appendix.

2. The main theorem

For a mathematical discussion of the solutions of (1), it is convenient to rewrite it in a simpler,
dimensionless form; we limit ourselves to the case of an external Coulomb force, mainly the
case of the equation ε

...
x= mẍ + Ze2x

|x|3 . In terms of x′ = r0x, with r0 = (4Z/9)1/3e2/mc2 and
t ′ = m/ε t this becomes

...
x= ẍ +

x

ρ3

where ρ = |x| and primes are omitted. This is the equation discussed in the rest of the paper.
The notation v = ẋ, a = ẍ, and v = |v|, a = |a| will often be used. The relevant theorem is
the following one.

Theorem. Consider the differential equation
...
x= ẍ +

x

ρ3
with ρ = |x| x ∈ R

3. (2)

Then for any choice of initial data x0 ∈ R
3/{0}, ẋ0 ∈ R

3 and ẍ0 ∈ R
3 at time t0, there exists

no tc ∈ R ∪ {+∞}, tc > t0, such that the corresponding solution x = x(t) verifies

lim
t→tc

ρ(t) = 0. (3)

Proof. We will prove the theorem by absurdity, showing that the property ρ → 0 implies
d
dt

ρ → +∞, which is impossible for a positive function. More precisely, we will show that
there is a contradiction in supposing that there exists a solution of (2) and times t1, tc such that

ρ > 0 for t ∈ (t1, tc) and lim
t→tc

ρ = 0. (4)

This entails that the solution is analytic for t ∈ (t1, tc), which will be used below.
Consider first the case tc < +∞. Then the following lemma, to be proven in section 3,

holds.
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Lemma 1. Let x(t) be a solution of (2) such that ρ → 0 for t → tc, with tc < +∞. If ρ−1 is
integrable on (t0, tc], then one has

(i) lim supt→tc
|ρ̇| = +∞

(ii) limt→tc v2 = +∞.

On the other hand, by trivial manipulations one sees that for solutions of (2) one has

ρρ̈ = v2 + 2(v2 − ρ̇2) + 2(a0 · x0 − v2
0)e

t−t0 + 2
∫ t

t0

ds et−s

(
v2

2
+

1

ρ

)
. (5)

This is seen as follows. Multiplying (2) by x and using the identity

ȧ · x − a · x = et d

dt

(
e−t

(
a · x − v2

2

))
− v2

2
(6)

one obtains
d

dt

(
e−t

(
a · x − v2

2

))
− v2

2
= e−t

(
v2

2
+

1

ρ

)

and this by integration gives

a · x = v2

2
+

(
a0 · x0 − v2

0

2

)
et−t0 +

∫ t

t0

ds et−s

(
v2

2
+

1

ρ

)
. (7)

Equation (5) then follows by usingρρ̈+ρ̇2 = a·x+v2, which is obtained by twice differentiating
the identity ρ2 = x · x with respect to time.

From (5) we can show that ρ̈ρ diverges. This follows by noting that v2 − ρ̇2 is always
non-negative, and on the other hand either ρ−1 is non-integrable or, by lemma 1, v2 diverges.

Thus, there exists a positive constant k such that definitively one has

ρ̈ >
k

ρ
. (8)

But this gives a contradiction. Indeed the property ρ̈ > 0 implies that ρ̇ is monotonic increasing
as t → tc, so that the limit of ρ̇ exists; moreover, such a limit cannot be infinite because this
would imply that ρ̇ > 0 (for t sufficiently close to tc) and in turn this would imply ρ be
increasing in contradiction with ρ → 0. The existence of the limit implies that ρ̈ must be
integrable; consequently, from inequality (8) it follows that ρ−1 is integrable too, and this gives
a contradiction by (i) of lemma 1. This shows that it is impossible that tc is finite.

We show now that even the case tc = +∞ gives a contradiction. In fact, suppose that for
t → +∞ one has ρ → 0. This implies that the solution is analytic for t ∈ (t̃ , +∞) with a
given t̃ , and so from now on all times will be taken to be greater than t̃ . On the other hand the
following lemma, to be proven in section 3, holds.

Lemma 2. If x is a solution of (2) such that |x| → 0 for t → +∞, then the following properties
hold:

(i) the function a2 is integrable,
(ii) limt→+∞ v2 = +∞.

From lemma 2 the contradiction quickly follows. In fact one has

a2 � a2
r

def= (ρ̈ + ρ̇2/ρ − v2/ρ)2

where ar is the radial component of the acceleration a. This, in particular, entails ρ̈ + ρ̇2/ρ �
−a + v2/ρ, or also (by ρ̈ + ρ̇2/ρ = ρ−1 d

dt
ρρ̇)

d

dt
ρρ̇ � v2 − aρ.
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Now the integral
∫ t

t0
(v2 −ρa) ds → +∞ for t → +∞, because on the one hand one has (using

the Cauchy estimate and (i) of lemma 2)
∫ t

t0
ρa ds < (

∫ t

t0
a2 ds)

1
2 (

∫ t

t0
ρ2 ds)

1
2 � K(t − t0)

1
2 ,

with a suitable K , while, on the other hand, one has
∫ t

t0
v2 ds � K ′(t − t0), with a suitable

K ′, by (ii) of lemma 2. Thus, it follows that ρρ̇ → +∞, which implies that ρ̇ → +∞, in
contradiction with ρ → 0. This completes the proof. �

3. Proof of the lemmas

In the proof of the lemmas we make use of the relations

a · v +
1

ρ
=

(
a0 · v0 +

1

ρ0

)
et−t0 +

∫ t

t0

ds et−s

(
a2 − 1

ρ

)
(9)

a2 = a2
0e2(t−t0) +

∫ t

t0

ds e2(t−s) 2a · x

ρ3
(10)

which hold for solutions of (2). The proof is analogous to that of relation (5), which
was obtained by multiplying (2) by x and using the identity (6); now (9) is obtained by
multiplying (2) by v and using the identity ȧ · v = d

dt
(a · v) − a2, while (10) is obtained by

multiplying (2) by a and using the identity ȧ · a − a2 = e2t d
dt

(e−2t a2

2 ).
We will also make use of a generalized energy theorem which holds for equation (2),

namely

E(t) = E(t0) −
∫ t

t0

a2 d s (11)

where

E
def= v2

2
− 1

ρ
− a · v (12)

is the generalized energy E, which turns out to be a decreasing function of time. Relation (11)
is obtained, as in the familiar case of Newton’s equation, by multiplying (2) by v and using
again the identity ȧ · v = d

dt
(a · v) − a2. We now proceed to the proof of the lemmas.

Proof of lemma 1. The proof will be given by contradiction. As 1/ρ is integrable on [t, tc],
the Cauchy inequality gives

tc − t =
∫ tc

t

ds
√

ρ
1√
ρ

�
( ∫ tc

t

ds ρ

)1
2
( ∫ tc

t

ds
1

ρ

)1
2

or equivalently

tc − t

(
∫ tc
t

ds ρ)
1
2

�
( ∫ tc

t

ds
1

ρ

)1
2

.

The denominator at the lhs is estimated as follows. One has ρ = − ∫ tc
t

ds ρ̇ (because of
ρ(tc) = 0), and so one finds∫ tc

t

ds ρ = −
∫ tc

t

ds

∫ tc

s

ds ′ ρ̇ =
∫ tc

t

ds (s − t)ρ̇ �
(

(tc − t)
3
2

3
1
2

)( ∫ tc

t

dsρ̇2

)1
2

having again made use of the Cauchy estimate. Using this bound in the previous inequality
and taking the fourth power of both members one finally gets

3(tc − t)∫ tc
t

ds ρ̇2
�

( ∫ tc

t

ds
1

ρ

)2

.
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Denote now k2 def= lim supt→tc
ρ̇2 and restrict t to an interval [t̄ , tc] such that ρ̇2 < 3k2. Then

one has

1

k2
�

( ∫ tc

t

ds
1

ρ

)2

i.e. lim sup ρ̇2 > 1/(
∫ tc
t

ds 1/ρ); letting t → tc this gives

lim sup
t→tc

ρ̇2 = +∞.

The first part of the lemma is thus proved.
We now proceed to the proof of the second part. The generalized energy relation (11),

using a · v = d
dt

v2/2, gives

−et d

dt

(
e−t v

2

2

)
= E0 +

1

ρ
−

∫ t

t0

ds a2

from which, by integration from t0 and t , one finds

v2

2
= et−t0

v2
0

2
− E0(e

t−t0 − 1) +
∫ t

t0

ds et−s

∫ s

t0

ds ′ a2 −
∫ t

t0

ds
et−s

ρ
. (13)

From this, as
∫

ds et−s/ρ � 0, one obtains the following estimate:∫ t

t0

ds et−s

∫ s

t0

ds ′ a2 � v2

2
− et−t0

v2
0

2
+ E0(e

t−t0 − 1).

We now let t → tc and remark that the limit of the lhs exists (we are dealing with an integral
of a positive function) and that v2 � ρ̇2; so one has

lim
t→tc

∫ t

t0

ds et−s

∫ s

t0

ds ′ a2 � lim sup
t→tc

v2

2
− etc−t0

v2
0

2
+ E0(e

tc−t0 − 1) = +∞.

The other integral appearing at the rhs of (13) has instead a finite limit when t tends to tc,
because, by hypothesis, 1/ρ is integrable. Consequently, letting t → tc in (13), one obtains
that lim v2 exists and is infinite. �

Proof of lemma 2. We begin by showing that a2 is integrable. Adding (7) and (9) one obtains

a · x = (a0 · x0 − E0)e
t−t0 + E0 +

∫ t

t0

ds

[
(et−s − 1)a2 + et−s v2

2

]
(14)

which holds for all t0 < t < +∞. This implies that

a · x � E = E0 −
∫ t

t0

ds a2 (15)

for all t . In fact, if for some t1 one had a ·x > E, taking initial data at time t1 from (14) would
get a · x > (a1 · x1 −E1)et−t1 + E1 (because the integral at the rhs of (14) is positive); in turn,
in view of the identity ρ̈ρ = a · x + v2 − ρ2, this implies that ρ̈ diverges exponentially fast to
+∞ in contradiction with ρ → 0. Now using in (10) the estimate (15) one obtains

a2

2
� e2(t−t0)

(
a2

0

2
+

∫ t

t0

ds
e2(t0−s)

ρ3

(
E0 −

∫ s

t0

ds ′ a2

))
.

As a2 has to be non-negative, for all t0 ∈ R one has

a2
0

2
�

∫ t

t0

ds
e2(t0−s)

ρ3

(
− E0 +

∫ s

t0

ds ′ a2

)
∀t � t0.
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Now, the function E0 − ∫ s

t0
ds ′ a2 is a non-increasing function, so it has definitively a constant

sign, so that the limit for t → +∞ of the integral at the rhs exists, and one gets

a2
0

2
�

∫ +∞

t0

ds
e2(t0−s)

ρ3

(
− E0 +

∫ s

t0

ds ′ a2

)
.

Now one arrives at a contradiction supposing thata2 is non-integrable. In fact, using lemma A of

the appendix with f = 1
ρ3

(
−E0 +

∫ s

t0
ds ′a2

)
, one finds a2

0 → +∞ for t0 → +∞. Furthermore,

from (11), one has E(t) → −∞, so that there exists a t0 for which E0 < 0. Now, defining
ε0 = maxt�t0 ρ3, one has

a2
0

2
�

∫ +∞

t0

ds
e2(t0−s)

ρ3

(
− E0 +

∫ s

t0

ds ′a2

)
�

∫ +∞
t0

ds e2(t0−s)
∫ s

t0
ds ′ a2

ε0

and changing the order of integration one gets

a2
0

2
�

∫ +∞
t0

ds e2(t0−s)a2

2ε0

which implies ∫ +∞

t0

ds e2(t0−s)(a2 − ε0a
2
0) � 0 (16)

for all t0. But now, defining f (t)
def= a2(t) and g(t)

def= maxs�t ρ
3, one has that f

and g are continuous functions and e−2t f is clearly integrable. If, in addition, one has
f (t0) = a2

0 → +∞, so by lemma B of the appendix one gets
∫ +∞
t0

ds e2(t0−s)(a2 − ε0a
2
0) � 0

in contradiction to (16).
We now turn to the proof of part (ii) of lemma 2: i.e. that v2 → +∞. From definition (12)

of the generalized energy one finds et d
dt

(et v2/2) = −(E + 1/ρ) and by integration this gives

v2

2
= et−t0

(
v2

0

2
−

∫ t

t0

ds et0−s

(
E +

1

ρ

))
.

As E is bounded below (recall that a2 was just shown to be integrable) and ρ tends to zero,
there exists t̄ such that E + 1/ρ > 0 for t > t̄ . Taking t0 > t̄ , from v2 � 0 it follows that
v2

0/2 �
∫ t

t0
ds et0−s(E + 1

ρ
) for all t > t0, which taking the limit t → +∞ gives

v2
0

2
�

∫ +∞

t0

ds et0−s

(
E +

1

ρ

)
.

Thus, taking the limit t0 → +∞ and using lemma A of the appendix one finds v2
0 → +∞, i.e.

part (ii) of the thesis. �

4. Comments

We have shown that it is impossible that the particle falls on the centre of force. It would
be interesting to know whether there exist motions which remain bounded for all times. For
motions on a line, Zin [5] showed not only that this is not the case, but also that, on the contrary,
all motions are unbounded and have accelerations which asymptotically increase exponentially
with time.

In the three-dimensional case it is known that there exist unbounded motions having
vanishing asymptotic acceleration [6] (the so-called nonrunaway solutions), which represent,
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from the physical point of view, the scattering of an impinging particle by the centre of forces.
If bounded solutions exist, they would correspond to the stable atom, but nothing is known
presently.

From the physical point of view it would be interesting to consider the full relativistic
Abraham–Lorentz–Dirac equations, because particles close to the centre of force can reach
velocities close to the speed of light. The only rigorous result known to the present author is
a theorem by Zin [5], which extends Eliezer’s result to relativistic motions on a line.
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Appendix

Lemma A. Let f (t) : [t0, +∞] → R be a continuous function for which limt→+∞ f (t) exists.
Then if e−t f (t) ∈ L1(t0, +∞) one has

lim
t→+∞

∫ +∞

t

ds et−sf (s) = lim
t→+∞ f (t).

Proof. The proof is a simple application of the L’Hospital theorem. In fact, one has∫ +∞

t

ds et−sf (s) =
∫ +∞
t

ds e−sf (s)

e−t
.

Now the integral
∫ +∞
t

ds e−sf (s) tends to 0 as t → +∞, while, being e−sf (s) continuous,
the integral turns out to be a C1 function of t . Thus, one can apply the L’Hospital theorem
(see [7]), and then, taking the derivatives and passing to the limit, the thesis follows. �

Lemma B. Let f (t), g(t) : [tc, +∞] → R be two continuous functions such that f (t) → +∞
and g(t) → 0 for t → +∞. Suppose, in addition, that e−2t f (t) is integrable. Then there
exists t̄ such that∫ +∞

t̄

ds e2(t̄−s)(g(t̄)f (t̄) − f (s)) < 0. (B.1)

Proof. As g(t) tends to zero and f (t) diverges, there exists a time t̃ such that both |g(t)| < 1/2
and f (t) > 1 hold for t > t̃ . So taking t = t0 > t̃ in (B.1), as the integrand in (B.1) turns out
to be negative for s = t0, either there exists t1 such that g(t0)f (t0) > f (t1), or the thesis is
proven. Then taking in (B.1) t = t1, by virtue of g(t1)f (t1) < f (t1), either there exists t2 such
that g(t1)f (t1) > f (t2) or the thesis is proven. In such a way we construct points t0, . . . , tn
such that g(tk)f (tk) > f (tk+1). So one has

f (tn) < g(tn−1)f (tn−1) < g(tn−1)g(tn−2)f (tn−2) < · · · < f (t0)

n−1∏
k=0

g(tk).

This relation shows that the sequence {tn} cannot be continued indefinitely, as one has f (tn) > 1
while |g(t0)·g(t1) . . . g(tn)| < 1/2n tends to zero as n → +∞. So the sequence has to terminate
for some tn, and for s > tn one has g(tn)f (tn) − f (s) < 0; thus taking t̄ = tn one finds the
thesis. �
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